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Molecular dynamics (MD) [1] is a popular material 
simulation technique based on Newton’s equations 
of motion for a large number of interacting 

particles. The power and accuracy of MD stems from the 
relatively fundamental nature of the processes it describes. 
MD consists of the numerical integration of the following 
system of ordinary differential equations (ODE):

(1)			    

Here qi, pi, and mi are the position, momentum, and mass 
of the ith particle, respectively, and Φ(q) is the interaction 
potential. The number of particles N is often very large in 
a realistic system, which can be computationally intensive 
to simulate. For this reason, MD is currently confined to 
the description of length and time scales on the order of 
microns and nanoseconds, respectively [2]. It is often the 
case, however, that only the trajectories of some subset of the 
particles in (1) are needed to extract useful information from 
an MD simulation. In this article, we outline a technique for 
constructing a set of differential equations for the evolution 
of such a subset and present some results from a simple toy 
problem.

Suppose we wish to keep—without loss of generality—the 
first M of the particles in equation (1). We can split the 
variables (qi, pi) into two groups: (a) the resolved particles 
with positions and momenta qi and pi, where 1 ≤ i ≤ M, 
and (b) the discarded unresolved particles with variables 
denoted by qi and pi, where 1 ≤ i ≤ N - M. Via a sequence 
of mathematical steps too involved to reproduce here, it can 
be proven [3] that the qi and pi are governed by the following 
reduced system of differential equations:

(2)                            
           

The derivation of this set of stochastic integro-differential 
equations is a generalization of the Mori-Zwanzig memory 
function formalism [4,5]. Here ϕ(q) is known as the 
renormalized potential, Ki(t) is a memory kernel, and Fi(t) 
is a random force. These quantities take somewhat different 
forms depending on the details of the system in question and 
the nature of the variable splitting that is chosen, though 
general expressions exist for their calculation.

As a simple (yet fundamental) example to illustrate some 
details of the system in (2), we consider the toy problem of a 
fluid of identical particles at thermal equilibrium governed by 
the potential:
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where uLJ is the Lennard-Jones pair potential. For such 
a system, it can be shown that it is optimal to choose the 
renormalized potential as the potential of mean force of the 
resolved particles, namely:

(4)   	
	   
The form of ϕ(q) will then be that of a modified pair 
potential plus a three-body interaction, a four-body 
interaction, and so on. The statistical isotropy inherent in 
(3) implies that the memory kernel Ki(t) is a scalar, and the 
fact that these are identical particles implies that Ki(t)=K(t) 
is the same for all i. Furthermore, it can be proven that K(t) 
decays relatively slowly for large t as t-d/2, where d is the 
spatial dimensionality of the system. Several examples of 
the memory kernel for this system are shown in Fig. 1 for 
various M / N ratios. These were calculated from the Volterra 
integral equation (not shown here) that defines K(t). Finally, 
note that in this simple equilibrium system the random force 
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Fi(t) is a Gaussian stochastic process, and that its correlation 
is given by the familiar fluctuation-dissipation theorem:

(5)	 jiBji tKTkmdtFttF δ)()'()'( =⋅+ ,		    

though this is not necessarily the case in general.

Equations (1) and (2) are relatively straightforward to 
integrate numerically for reasonable values of N and M. 
Results for the trajectory of a single particle chosen from 
a full system of N=500 particles are shown in Fig. 2, 
along with the trajectory of the single particle remaining 
in a reduced system of M=1. Despite the fact that the 
environments of these two particles are profoundly different 
– the former interacts with 499 other particles, the latter 
explicitly with none – the qualitative character of their 
trajectories is the same. This notion can be made more 
quantitative by noting that both the diffusion coefficient and 
the velocity autocorrelation function of the two particles 
can be shown to be identical both in theory and simulation. 
Results regarding the invariance of other properties between 
the full and reduced systems can be both derived and verified.

The formalism outlined above has relevance to many MD 
applications where variable splitting may be desirable. These 
include systems with a significant difference in size between 
resolved and unresolved particles (i.e., colloidal systems), as 
well as systems with a large difference in time scale between 
different parts of the system (e.g., proteins, where high-
energy bonds vibrate at a much higher frequency). Further 
refinement and application of such techniques in these and 
other contexts may have a significant impact on the type and 
scale of problems accessible to MD.

For further information contact John L. Barber at 
jlbarber@lanl.gov.

Fig. 1. Memory kernels K(t) 
calculated in the example 
system for various M/N ratios. 
Sets of curves for two full 
system dimensionless number 
densities ρ = N/V are shown: 
(a) ρ = 0.2 (low-density 
gas), and (b) ρ = 1.0 (high-
density liquid).

Fig. 2. Plane-projected 
trajectories of (left) a single 
particle selected from a full 
system of N = 500 Lennard-
Jones particles, and (right) 
the remaining particle in a 
reduced system with  
M = 1.
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